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68Ga-DOTATATE PET: The Future of Meningioma
Treatment
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Meningiomas are the most common primary brain tumor in
North America.1,2 Surgery is the preferred first line treat-
ment for resectable tumors requiring intervention, but radi-
ation therapy (RT) can be offered for unresectable,
recurrent, incompletely resected, and/or higher-grade dis-
ease. In many instances, deciding whether to offer close
observation or RT depends on reliable recognition of resid-
ual, recurrent, and/or the extent of intact disease.1 Cur-
rently, computed tomography (CT) and magnetic resonance
imaging (MRI) represent the imaging standard for defining
disease extent.1,3 However, it can be difficult to discern
tumor extent with precision using these anatomic imaging
modalities alone consequential to clinical factors ranging
from challenging location (such as skull base or parasagittal
sinus) to bony involvement or confounding postoperative
changes.1,3-5

In the management of extracranial malignancies, func-
tional, and molecular techniques such as positron emission
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tomography (PET) imaging routinely supplement anatomic
imaging.1 Because nearly all meningiomas express somato-
statin receptor 1/2 (SSTR1/SSTR2), molecular imaging tech-
niques using SSTR ligands (eg, 68Gallium-DOTATATE)
have the potential to aid in accurate tumor extent identifica-
tion.1 The Response Assessment in Neuro-Oncology
(RANO) Working Group recently published guidelines rec-
ommending the use of 68Ga-DOTATATE PET imaging in
patients with meningioma.1 Suggested uses include diagnos-
tic confirmation, surgical planning, delineation of RT target
volumes, and posttreatment surveillance.1

The optimal time to obtain PET imaging for surgical
patients may depend on patient presentation, as PET has
both preoperative and postoperative utility. In cases where
diagnosis remains uncertain or equivocal after MRI, preop-
erative PET imaging may offer improved sensitivity.1 One
series that included nearly 200 meningiomas found that
MRI had a 92% rate of detecting meningiomas identifiable
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by PET.5 This superior sensitivity with PET was primarily
driven by improved performance for tumors invading bone,
hidden by calcifications/radiographic abnormalities, cen-
tered at the skull base, or located adjacent to the falx cerebri.
PET can also be extremely useful for differentiating unre-
sectable optic nerve sheath meningiomas from other
tumors.1 Another potential use for preoperative PET is
improved surgical planning, particularly for maximal safe
resection of tumors involving eloquent areas or critical
organs.1,6 Coregistration of PET to intraoperative CT or
MRI can inform challenging intraoperative decisions such
as whether to resect dura, bone, or scar tissue, as it may oth-
erwise be difficult to differentiate involved from uninvolved
tissues.6

However, in most cases, postoperative PET may have
greater use, as it can strongly impact postoperative
management.1,6 In one prospective surgical series, nearly
20% of perceived gross total resections (GTR, Simpson
grade 1-2) by intraoperative evaluation and postoperative
MRI were revealed by PET to be subtotal resections.4

Intriguingly, this approximates the long-term rate of relapse
Fig. 1. Postoperative magnetic resonance imaging (A) suggest
changes only, but positron emission tomography (PET) imaging (
ized uptake value 7.43, white arrow) suspicious for residual disea
radiation therapy. Two years later, surveillance magnetic resona
arrow) in the area of the cribiform plate with prior focal PET upt
yellow arrow) noted on repeat PET imaging (D).
after gross total resection of a grade 1 meningioma, with the
implication that PET may potentially identify these patients
up front, possibly leading to a more robust discussion
regarding adjuvant RT or observation and improved thera-
peutic ratio. Figure 1 demonstrates one such case from our
institutions. For this patient, although MRI was consistent
with GTR in a challenging to visualize skull base location,
PET (standardized uptake value [SUV] 7.43) was consistent
with a subtotal resections with avidity in the cribriform
plate. The patient declined to purse recommended adjuvant
RT, and 2 years later experienced local failure requiring sal-
vage RT at the site of PET-avid disease (now SUV 8.96).

Additionally, PET can help with delineation of RT vol-
umes in both the definitive and adjuvant setting.1,7-11 PET
can identify bony/skull base involvement or nonadjacent
areas of disease that may be missed with MRI-based plan-
ning alone.1,10 One such case from our institutions is shown
in Figure 2 in a nonsurgical patient whose PET revealed
left-sided skull base disease that was poorly visualized with
MRI alone. Furthermore, by enhancing the ability to differ-
entiate postoperative changes from residual tumor, PET
ed a gross total resection with contrast enhancing reactive
B) showed focal uptake along the cribiform plate (standard-
se. The patient declined to pursue recommended adjuvant
nce imaging (C) showed increased soft tissue signal (green
ake with continued avidity (standardized uptake value 8.96
,



Fig. 2. Positron emission tomography revealed left-sided skull base disease (black arrow, A) that was poorly visualized with
magnetic resonance imaging alone (B).
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facilitates delineation of more precise and usually smaller
gross tumor volumes (GTV) in comparison to MRI-based
planning alone.1,7,9 A smaller GTV translates to a smaller
planning treatment volume1,7,9 and significantly reduces
dose to critical organs at risk such as the hippocampi, optic
apparatus, brain stem, and pituitary gland.9 Consequently,
incorporating PET in RT planning has the potential to
decrease acute and chronic toxicity rates. Despite the
decreased treatment volumes, local control remains excel-
lent9 and possibly even improved in some settings.8 One
series documenting outcomes in patients with 339 meningi-
omas found that use of PET was independently associated
with improved local control and overall survival in low-
grade (n = 276) but not higher-grade tumors.8 Posttreat-
ment, PET can provide useful information in terms of dif-
ferentiating tumor progression from posttreatment effects,
which can be difficult with CT and MRI.1,5,6

These benefits have been reported elsewhere1,4-6,8,9 but
have not yet become mainstream in the US because of
very limited exposure in the radiation oncology literature,
and also general unavailability of the agent until this
year.7,10 With the recent Food and Drug Administration
approval for this option, increased awareness within Radi-
ation Oncology might result in more consistent use clini-
cal practice for treatment planning. A key limitation is
that to date, the literature evaluating the efficacy of PET
imaging is primarily limited to relatively small, retrospec-
tive, single institution series, and greater accuracy in
tumor delineation with PET imaging has not yet been
prospectively linked to improved clinical outcomes.
Although lack of prospective data are an obstacle to PET
being considered standard of care, lack of awareness of its
use in radiation oncology may also be precluding pursuit
of prospective confirmation. Future prospective studies
should prospectively confirm whether use of PET-based
volumes decreases dose to organs at risk and toxicity
rates. Local control with PET versus MRI-based planning
could be compared prospectively. Additionally, randomized
trials could incorporate PET findings into inclusion
criteria or patient stratification schemes. For example,
on the currently accruing phase III trial BN-003
(NCT03180268), where patients with grade II meningioma
are randomized to adjuvant RT versus observation after
GTR, PET-positivity or negativity could be an important
consideration.

Several limitations of 68Gallium-DOTATATE PET imag-
ing for meningioma should be acknowledged. First, PET
avidity is not specific to meningioma; other tumors or
inflammatory processes can express SSTRs1,5 However,
these other diseases usually demonstrate reduced uptake rel-
ative to meningioma and present with noticeably different
CT/MRI characteristics. Furthermore, because the pituitary
gland demonstrates physiological uptake, tumor adjacent to
it might be difficult to distinguish with clarity.1 Additionally,
due to the limited spatial resolution of PET imaging, it is
unlikely to accurately identify potential microscopic disease,
and therefore cannot define the clinical target volume with
precision. However, this limitation is not unique to PET, as
even with MRI-based contouring, an additional estimated
clinical target volume is typically used, and these estimates
are based on data from the surgical literature as well as from
patterns of recurrence studies.

In summary, incorporation of 68Gallium-DOTATATE
PET imaging into routine management for meningioma
has the potential to overcome some of the limitations of
standard of care anatomic imaging. In particular, PET
may be useful for disease identification in the skull base
or adjacent to the falx or sinuses, identifying bony
involvement, and differentiating progression from post-
treatment changes. Potential benefits include improved
diagnostic sensitivity, surgical planning, determination of
the extent of resection, selection of RT target volumes
(especially GTV), and differentiation between true and
pseudo progression. Increased awareness of the utility of
68Gallium-DOTATATE PET for meningioma is needed. It
is also crucial to underscore the need for the conduct of a
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well-designed prospective multi-institutional trial to con-
firm its true utility, and several such trials are under
consideration.
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